Research article
The Technique of Musical Icosahedra
Research article
The Technique of Musical Icosahedra
References
- Akopyan, L. O. “The laws of Xenakis’ music not formulated by the composer himself,” Muzykal’naya akademiya [Music Academy], no. 1 (773), 2021, pp. 40–59, doi:10.34690/127. (In Russ.)
- Gen-Ir, U. Istoriya muzyki Vostochnoj Azii (Kitay, Koreya, Yaponiya). Uchebnoe posobie [History of Music of East Asia (China, Korea, Japan). Study Guide], St. Petersburg : Planeta muzyki, 2011. (In Russ.)
- Golubev, A. “Music as artistic mathematics,” Muzykal’naya akademiya [Music Academy], no. 2 (659), 1997, pp. 133–137. (In Russ.)
- Okuneva, E. G. “Serial technique in Western Europe: history and aesthetics, theory and practice,” Doctoral (Art History) Dissertation, Petrozavodsk : Petrozavodsk State Glazunov Conservatoire, 2021, http://mosconsv.ru/upload/images/Documents/DiserDoctor/okuneva_diss.pdf (accessed 21 July 2024). (In Russ.)
- Pereverzeva, M. V. Teoriya sovremennoy kompozitsii: algoritmicheskaya muzyka. Uchebnoe posobie [Theory of Contemporary Composition: Algorithmic Music. Study Guide], Moscow : Rossijskij gosudarstvennyj social’nyj universitet, 2021. (In Russ.)
- Kharms, D. I. Starukha: Rasskazy, stseny, povest’ [The Old Woman: Stories, Scenes, A Tale], ed. by V. Glotser, Moscow : Yunona, 1991. (In Russ.)
- Kholopov, Yu. N., Kirillina, L. V., Kyuregyan, T. S.,
Lyzhov, G. I., Pospelova, R. L., Tsenova, V. S. Muzykal’no-teoreticheskie sistemy [Musical-Theoretical Systems], Moscow : Kompozitor, 2006. (In Russ.) - Tsaregradskaya, T. V. “Set theory in the USA: Milton Babbit and Allen Forte,” Iskusstvo muzyki: teoriya i istoriya [The Art of Music: Theory and History], vol. 6, 2012, pp. 157–177. (In Russ.)
- Babbitt, M. “Twelve-tone invariants as compositional determinants,” Musical Quarterly, vol. 46, no. 2, 1960, pp. 246–259, https:// jstor.org/stable/740374 (accessed 12 July 2024).
- Catanzaro, M. J. “Generalized Tonnetze,” Journal of Mathematics and Music, vol. 5, 2011, pp. 117–139, doi:10.1080/17459737.2011.614448.
- Cohn, R. “Introduction to neo-Riemannian theory: a survey and a historical perspective,” Journal of Music Theory, vol. 42, no. 2, 1998, pp. 167–180, doi:10.2307/843871.
- Euler, L. Tentamen Novae Theoriae Musicae Ex Certissismis Larmoniae Principiis Dilucide Expositae, Petropoli : Ex typographia Academiae Scientiarum, 1739, https://archive.org/details/bub_gb_aekmN1V98GcC (accessed 21 July 2024).
- Frederick, L. “Diatonic voice-leading transformations,” Music Theory Spectrum, vol. 46, no. 1, 2023, pp. 37–69, doi:10.1093/mts/mtad017.
- Hopkins, B. “Hamiltonian paths on Platonic graphs,” International Journal of Mathematics and Mathematical Sciences, vol. 30, 2004, pp. 1613–1616, doi:10.1155/s0161171204307118.
- Imai, Y. “General theory of music by icosahedron 2: analysis of musical pieces by the exceptional musical icosahedra,” ArXiv, 2021, https://arxiv.org/pdf/2108.10294 (accessed 21 July 2024), doi:10.48550/arXiv.2108.10294.
- Imai, Y. “General theory of music by icosahedron 3: musical invariant and Melakarta raga,” ArXiv, 2021, https://arxiv.org/pdf/2109.12475 (accessed 21 July 2024), doi:10.48550/arXiv.2109.12475.
- Imai, Y., Dellby, S. C., Tanaka, N. “General theory of music by icosahedron 1: a bridge between ‘artificial’ scales and ‘natural’ scales,” ArXiv, 2021, https://arxiv.org/pdf/2103.10272 (accessed 21 July 2024), doi:10.48550/arXiv.2103.10272.
- Jevtić, F. D., Živaljević, R. T. “Generalized Tonnetz and discrete Abel-Jacobi map,” Topological Methods in Nonlinear Analysis, vol. 57, no. 2, 2021, pp. 547–567, doi:10.12775/tmna.2020.049.
- Kepler, J. Harmonices mundi libri V, Lincii Austriae : sumptibus Godofredi Tampachii…, pr. by Ioannes Plancus, 1619, https://archive.org/details/ioanniskepplerih00kepl (accessed 19 July 2024).
- Kepler, J. Prodromus Dissertationum Cosmographicarum, Continens Mysterium Cosmographicum, De Admirabili Proportione Orbium Coelestium <...>, Tubingae : pr. by Georgius Gruppenbachius, 1596, https://archive.org/details/1596-kepler-prodromus-dissertationum-cosmographicarum-continens-mysterium-cosmographicum (accessed 21 July 2024).
- Rietsch, K. “Generalizations of Euler’s Tonnetz on triangulated surfaces,” Journal of Mathematics and Music, vol. 18, no. 3, 2024, pp. 328–346, doi:10.1080/17459737.2024.2362132.
- Shapiro, S. Thinking About Mathematics. The Philosophy of Mathematics, Oxford, New York : Oxford University Press, 2000.
- Tymoczko, D. A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice, New York : Oxford University Press, 2011.
- Tymoczko, D. “The Generalized Tonnetz,” Journal of Music Theory, vol. 56, no. 1, 2012, pp. 1–52, doi:10.1215/00222909-1546958.
- Tymoczko, D. Tonality: an Owner’s Manual, New York : Oxford University Press, 2023, doi:10.1093/oso/9780197577103.001.0001.
- Weisstein, E. W. “Icosian game.” Wolfram MathWorld, https://mathworld.wolfram.com/IcosianGame.html (accessed 21 July 2024).
- Yust, J. “Generalized Tonnetze and Zeitnetze, and the topology of music сoncepts.” Journal of Mathematics and Music, vol. 14, no. 2, 2020, pp. 170–203, doi:10.1080/17459737.2020.1725667.
- Ziegler, G. M. Lectures on Polytopes, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong : Springer-Verlag, 1995. doi:10.1007/978-1-4613-8431-1. (Graduate Texts in Mathematics, vol. 152).